Sovereign Credit Risk, Macroeconomic Dynamics in Japan, and Contagion from Global Financial Markets

Zongxin Qian1 \quad Wendun Wang2 \quad Kan Ji3

1School of Finance, Renmin University of China
2Econometrics Institute, Erasmus University
3Utrecht School of Economics, Utrecht University

May 14, 2014
Overview

1. **Introduction**
2. **Data**
 - Japan’s sovereign CDS spread
 - Covariates
 - Time series property of the CDS data
3. **Single regime analysis**
4. **Regime switching model analysis**
 - Methodology
 - Endogeneity tests
 - Estimation results
5. **Drivers of the regime switching**
 - Drivers from financial markets
 - News events as drivers
 - European debt crisis as a driver?
6. **Conclusion**
Motivation

- Japan has the highest gross government debt-to-GDP ratio, 237.9%, over the World in 2012.

- The title of a major German newspaper (Spiegel) in January 2013:
 “The Greece of Asia: Japan’s Growing Sovereign Debt Time Bomb”

- According to the 2013 spillover report of the IMF, Japan’s sovereign risk can cause a serious global economic disaster.
Motivation

- Japan has the highest gross government debt-to-GDP ratio, 237.9%, over the world in 2012.

- The title of a major German newspaper (Spiegel) in January 2013: “The Greece of Asia: Japan’s Growing Sovereign Debt Time Bomb”

- According to the 2013 spillover report of the IMF, Japan’s sovereign risk can cause a serious global economic disaster.
Motivation

- Japan has the highest gross government debt-to-GDP ratio, 237.9%, over the world in 2012.
- The title of a major German newspaper (Spiegel) in January 2013: "The Greece of Asia: Japan’s Growing Sovereign Debt Time Bomb"
- According to the 2013 spillover report of the IMF, Japan’s sovereign risk can cause a serious global economic disaster.
A chart from IMF(2013)

Impact of sovereign debt stress in Japan

Notes: Based on simulations with the G35-S model. Key assumptions include: an increase in the fiscal balance by 1 percent of GDP; a rise in the short-term bond yield by 100 basis points and in the long-term bond yield by 200 basis points; and a drop in equity prices by 10 percent.
Studies on Japan’s debt sustainability

- Japan’s sovereign debt is unsustainable (Mendoza and Ostry, 2008; Ghosh et al., 2013; Sakuragawa and Hosono, 2011).
- Fincke and Greiner (2011): Japan’s sovereign debt is sustainable if you make the calculating with net government debt.

Limitations
The sustainability condition is a solvency condition, but countries default well before becoming insolvent! (Panizza et al., 2009; Reinhart and Rogoff, 2009)!
The calculation uses low frequency historical data, and therefore, does not provide information for current policy making.
Studies on Japan’s debt sustainability

- Japan’s sovereign debt is unsustainable (Mendoza and Ostry, 2008; Ghosh et al., 2013; Sakuragawa and Hosono, 2011).
- Fincke and Greiner (2011): Japan’s sovereign debt is sustainable if you make the calculating with net government debt.

Limitations

The sustainability condition is a solvency condition, but countries default well before becoming insolvent! (Panizza et al., 2009; Reinhart and Rogoff, 2009)!

The calculation uses low frequency historical data, and therefore, does not provide information for current policy making.
Studies on Japan’s debt sustainability

- Japan’s sovereign debt is unsustainable (Mendoza and Ostry, 2008; Ghosh et al., 2013; Sakuragawa and Hosono, 2011).
- Fincke and Greiner (2011): Japan’s sovereign debt is sustainable if you make the calculating with net government debt.

Limitations

The sustainability condition is a solvency condition, but countries default well before becoming insolvent! (Panizza et al., 2009; Reinhart and Rogoff, 2009)!

The calculation uses low frequency historical data, and therefore, does not provide information for current policy making.
Studies on Japan’s debt sustainability

- Japan’s sovereign debt is unsustainable (Mendoza and Ostry, 2008; Ghosh et al., 2013; Sakuragawa and Hosono, 2011).
- Fincke and Greiner (2011): Japan’s sovereign debt is sustainable if you make the calculating with \textit{net} government debt.

Limitations

The sustainability condition is a solvency condition, but countries default well before becoming insolvent! (Panizza et al., 2009; Reinhart and Rogoff, 2009)!
The calculation uses low frequency historical data, and therefore, does not provide information for current policy making.
What we do?

Study how indicators of macroeconomic fundamentals affect Japan’s sovereign CDS spread.

A sovereign CDS spread

- is a market-based indicator of sovereign risk. Its data is available at daily frequency.
- contains information beyond the solvency risk.

The results help reveal what factors are important for the cost-benefit analysis for a government when making decisions regarding repayment.
What we do?

Study how indicators of macroeconomic fundamentals affect Japan’s sovereign CDS spread.

A sovereign CDS spread
- is a market-based indicator of sovereign risk. Its data is available at daily frequency.
- contains information beyond the solvency risk.

The results help reveal what factors are important for the cost-benefit analysis for a government when making decisions regarding repayment.
What we do?

Study how indicators of macroeconomic fundamentals affect Japan’s sovereign CDS spread.

A sovereign CDS spread

- is a market-based indicator of sovereign risk. Its data is available at daily frequency.
- contains information beyond the solvency risk.

The results help reveal what factors are important for the cost-benefit analysis for a government when making decisions regarding repayment.
Longstaff et al. (2011), Dieckmann and Plank (2011), and Fontana and Scheicher (2010) find international spillover effects are important for a large panel of countries but not Japan.

They share two assumptions
- Effects of all determinants are constant over time.
- All determinants are exogenous.

These assumptions are not innocuous.
- The first one excludes contagion (Forbes and Rigobon, 2002; Dungey et al., 2005).
- The second one excludes the possible feedbacks from Japan’s sovereign risk to macroeconomic variables in and outside Japan.
Previous studies on sovereign CDS determination

- Longstaff et al. (2011), Dieckmann and Plank (2011), and Fontana and Scheicher (2010) find international spillover effects are important for a large panel of countries but not Japan.

- They share two assumptions
 - Effects of all determinants are constant over time.
 - All determinants are exogenous.

- These assumptions are not innocuous.
 - The first one excludes contagion (Forbes and Rigobon, 2002; Dungey et al., 2005).
 - The second one excludes the possible feedbacks from Japan’s sovereign risk to macroeconomic variables in and outside Japan.
Previous studies on sovereign CDS determination

- Longstaff et al. (2011), Dieckmann and Plank (2011), and Fontana and Scheicher (2010) find international spillover effects are important for a large panel of countries but not Japan.

- They share two assumptions
 - Effects of all determinants are constant over time.
 - All determinants are exogenous.

- These assumptions are not innocuous.
 - The first one excludes contagion (Forbes and Rigobon, 2002; Dungey et al., 2005).
 - The second one excludes the possible feedbacks from Japan’s sovereign risk to macroeconomic variables in and outside Japan.
Possibility of contagion and endogeneity

Possible triggers of financial contagion
- The sub-prime crisis in the U.S.
- The European debt crisis

Possible sources of endogeneity
- Japan’s sovereign CDS spread changes cause concerns in global markets
- The output costs of sovereign default (Sandleris, 2008; Bruti, 2011; Mendoza and Yue, 2012)

In this paper, both possibilities are allowed.
Possibility of contagion and endogeneity

Possible triggers of financial contagion
- The sub-prime crisis in the U.S.
- The European debt crisis

Possible sources of endogeneity
- Japan’s sovereign CDS spread changes cause concerns in global markets
- The output costs of sovereign default (Sandleris, 2008; Bruti, 2011; Mendoza and Yue, 2012)

In this paper, both possibilities are allowed.
Overview of results

- Contagion exists from the U.S. stock market to Japan.
- No *systematic direct* impact of the European debt crisis on Japan’s sovereign CDS market but *temporary indirect* impact does exist.
- No feedback effects from Japan’s sovereign CDS market to global markets, but significant feedback effects on domestic variables.
- The 3.11 earthquake in 2011 had significant impact on the CDS spread.
- Japan’s sovereign credit rating were cut by three rating agencies several times in 2011 and 2012. But only Fitch’s rating cuts in May, 2012 significantly affect Japan’s sovereign CDS spread.
Overview of results

- Contagion exists from the U.S. stock market to Japan.
- No **systematic direct** impact of the European debt crisis on Japan’s sovereign CDS market but **temporary indirect** impact does exist.
- No feedback effects from Japan’s sovereign CDS market to global markets, but significant feedback effects on domestic variables.
- The 3.11 earthquake in 2011 had significant impact on the CDS spread.
- Japan’s sovereign credit rating were cut by three rating agencies several times in 2011 and 2012. But only Fitch’s rating cuts in May, 2012 significantly affect Japan’s sovereign CDS spread.
Overview of results

- Contagion exists from the U.S. stock market to Japan.
- No **systematic direct** impact of the European debt crisis on Japan’s sovereign CDS market but **temporary indirect** impact does exist.
- No feedback effects from Japan’s sovereign CDS market to global markets, but significant feedback effects on domestic variables.
- The 3.11 earthquake in 2011 had significant impact on the CDS spread.
- Japan’s sovereign credit rating were cut by three rating agencies several times in 2011 and 2012. But only Fitch’s rating cuts in May, 2012 significantly affect Japan’s sovereign CDS spread.
Overview of results

- Contagion exists from the U.S. stock market to Japan.

- No **systematic direct** impact of the European debt crisis on Japan’s sovereign CDS market but **temporary indirect** impact does exist.

- No feedback effects from Japan’s sovereign CDS market to global markets, but significant feedback effects on domestic variables.

- The 3.11 earthquake in 2011 had significant impact on the CDS spread.

- Japan’s sovereign credit rating were cut by three rating agencies several times in 2011 and 2012. But only Fitch’s rating cuts in May, 2012 significantly affect Japan’s sovereign CDS spread.
Structure

- Data
- Single regime analysis
- Regime switching model analysis
- Drivers of regime switching
- Conclusions
Japan’s sovereign CDS spread

A brief introduction to sovereign CDS spread

- A CDS contract can be taken as an insurance contract against the credit event specified in the contract.
- Its spread, expressed in basis points, is the insurance premium that protection buyers have to pay.
- Credit events
 - Obligation acceleration
 - Repudiation
 - Restructuring
 - Failure to pay
A CDS contract can be taken as an insurance contract against the credit event specified in the contract.

Its spread, expressed in basis points, is the insurance premium that protection buyers have to pay.

Credit events
- Obligation acceleration
- Repudiation
- Restructuring
- Failure to pay
A brief introduction to sovereign CDS spread

The CDS protection buyer pays the spread in exchange for a compensation from the protection seller when a credit event happens.

- Physical settlement: swap the face value of the bond for the defaulted bond.
- Cash settlement: face value—recovery value.
Japan’s sovereign CDS spread

Japan’s CDS spread that we use

- 5-year.
- Against the credit event complete restructuring.
- Denominated in USD.
- Source: Datastream.
Table: Variable definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>forex</td>
<td>Nominal Yen to US Dollar exchange rate</td>
</tr>
<tr>
<td>sdri</td>
<td>DJTM Japan stock market return</td>
</tr>
<tr>
<td>svol</td>
<td>GARCH(1,1) Japan stock market volatility</td>
</tr>
<tr>
<td>gstock</td>
<td>MSCI US stock market total return</td>
</tr>
<tr>
<td>gbond</td>
<td>5-year constant maturity US treasury rate</td>
</tr>
<tr>
<td>ivbond</td>
<td>Investment grade corporate bond spread</td>
</tr>
<tr>
<td>hybond</td>
<td>High yield corporate bond spread</td>
</tr>
<tr>
<td>pe</td>
<td>S&P 100 price-earning ratio</td>
</tr>
<tr>
<td>vp</td>
<td>VIX minus Garman-Class volatility</td>
</tr>
<tr>
<td>tp</td>
<td>Excess return on five-year treasury bond</td>
</tr>
</tbody>
</table>

Notes:
Raw data are from Datastream.
Time series property of the CDS data
Time series property of the CDS data

Unit root tests

Table: Unit root tests of Japan’s sovereign CDS spread

<table>
<thead>
<tr>
<th></th>
<th>ADF</th>
<th>PP</th>
<th>ERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test statistics</td>
<td>-2.879</td>
<td>-2.949</td>
<td>-2.113</td>
</tr>
<tr>
<td>1% critical value</td>
<td>-3.967</td>
<td>-3.967</td>
<td>-3.480</td>
</tr>
<tr>
<td>5% critical value</td>
<td>-3.414</td>
<td>-3.414</td>
<td>-2.890</td>
</tr>
<tr>
<td>10% critical value</td>
<td>-3.239</td>
<td>-3.129</td>
<td>-2.570</td>
</tr>
<tr>
<td>First-differenced series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test statistics</td>
<td>-20.906</td>
<td>-32.734</td>
<td>-20.906</td>
</tr>
<tr>
<td>1% critical value</td>
<td>-3.436</td>
<td>-3.436</td>
<td>-2.567</td>
</tr>
<tr>
<td>5% critical value</td>
<td>-2.864</td>
<td>-2.864</td>
<td>-1.941</td>
</tr>
<tr>
<td>10% critical value</td>
<td>-2.568</td>
<td>-2.568</td>
<td>-1.616</td>
</tr>
</tbody>
</table>
Table: Single regime model results

<table>
<thead>
<tr>
<th></th>
<th>(O.1)</th>
<th>(O.2)</th>
<th>(G.1)</th>
<th>(G.2)</th>
<th>(TG.1)</th>
<th>(TG.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CDS_L1)</td>
<td>0.064***</td>
<td>0.061*</td>
<td>0.163***</td>
<td>0.153***</td>
<td>0.146***</td>
<td>0.141***</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.032)</td>
<td>(0.038)</td>
<td>(0.038)</td>
<td>(0.041)</td>
<td>(0.041)</td>
</tr>
<tr>
<td>(forex)</td>
<td>-0.423***</td>
<td>-0.374**</td>
<td>-0.020</td>
<td>-0.001</td>
<td>-0.073</td>
<td>-0.057</td>
</tr>
<tr>
<td></td>
<td>(0.171)</td>
<td>(0.054)</td>
<td>(0.115)</td>
<td>(0.116)</td>
<td>(0.118)</td>
<td>(0.118)</td>
</tr>
<tr>
<td>(sdri)</td>
<td>-0.275***</td>
<td>-0.249***</td>
<td>-0.273***</td>
<td>-0.244***</td>
<td>-0.215**</td>
<td>-0.195***</td>
</tr>
<tr>
<td></td>
<td>(0.053)</td>
<td>(0.054)</td>
<td>(0.041)</td>
<td>(0.041)</td>
<td>(0.043)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>(svol)</td>
<td>0.300***</td>
<td>0.278***</td>
<td>0.417***</td>
<td>0.310***</td>
<td>0.445***</td>
<td>0.340***</td>
</tr>
<tr>
<td></td>
<td>(0.102)</td>
<td>(0.100)</td>
<td>(0.102)</td>
<td>(0.122)</td>
<td>(0.118)</td>
<td>(0.118)</td>
</tr>
<tr>
<td>(gstock)</td>
<td>-0.070</td>
<td>-0.077</td>
<td>-0.027</td>
<td>-0.045</td>
<td>0.036</td>
<td>0.016</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.070)</td>
<td>(0.059)</td>
<td>(0.059)</td>
<td>(0.062)</td>
<td>(0.064)</td>
</tr>
<tr>
<td>(gbond)</td>
<td>-3.850**</td>
<td>-3.057*</td>
<td>-2.467*</td>
<td>-1.766*</td>
<td>-1.785</td>
<td>-1.283</td>
</tr>
<tr>
<td></td>
<td>(1.580)</td>
<td>(1.607)</td>
<td>(1.086)</td>
<td>(1.060)</td>
<td>(1.038)</td>
<td>(1.038)</td>
</tr>
<tr>
<td>(ivbond)</td>
<td>0.424</td>
<td>0.458</td>
<td>0.834**</td>
<td>0.879**</td>
<td>0.778**</td>
<td>0.795**</td>
</tr>
<tr>
<td></td>
<td>(0.641)</td>
<td>(0.639)</td>
<td>(0.392)</td>
<td>(0.379)</td>
<td>(0.415)</td>
<td>(0.410)</td>
</tr>
<tr>
<td>(hybond)</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td>(0.009)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>(pe)</td>
<td>-0.275</td>
<td>-0.265</td>
<td>-0.111</td>
<td>-0.107</td>
<td>-0.049</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>(0.170)</td>
<td>(0.169)</td>
<td>(0.176)</td>
<td>(0.172)</td>
<td>(0.179)</td>
<td>(0.176)</td>
</tr>
<tr>
<td>(tp)</td>
<td>-0.824</td>
<td>-0.869</td>
<td>-0.719**</td>
<td>-0.683**</td>
<td>-0.597</td>
<td>-0.563</td>
</tr>
<tr>
<td></td>
<td>(0.549)</td>
<td>(0.548)</td>
<td>(0.346)</td>
<td>(0.335)</td>
<td>(0.338)</td>
<td>(0.337)</td>
</tr>
<tr>
<td>(vp)</td>
<td>0.000</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>(vix)</td>
<td>0.116**</td>
<td>0.116***</td>
<td>0.105***</td>
<td>0.105***</td>
<td>0.105***</td>
<td>0.105***</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.029)</td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.030)</td>
<td>(0.030)</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. ***, **, * denotes significance at one, five, and ten percent level, respectively.
Methodology Kim(2009)

- We use a regime switching (RS) model to capture contagion effect.

- RS model v.s. sample division
 - no pretesting problems (Danilov and Magnus, 2004)

- We instrument potential endogenous variables by lags.

- The model is estimated in two steps.
 - In the first step, endogenous variables are regressed on their lags, like a RS-VAR. RS is allowed for the first step model for the sake of the Lucas (1976) critique.
 - In the second step, the first step residuals are used as control variables to eliminate the endogeneity bias.
Methodology Kim (2009)

- We use a regime switching (RS) model to capture contagion effect.
- RS model v.s. sample division
 - no pretesting problems (Danilov and Magnus, 2004)
- We instrument potential endogenous variables by lags.
- The model is estimated in two steps.
 - In the first step, endogenous variables are regressed on their lags, like a RS-VAR. RS is allowed for the first step model for the sake of the Lucas (1976) critique.
 - In the second step, the first step residuals are used as control variables to eliminate the endogeneity bias.
Methodology Kim (2009)

- We use a regime switching (RS) model to capture contagion effect.
- RS model v.s. sample division
 - no pretesting problems (Danilov and Magnus, 2004)
- We instrument potential endogenous variables by lags.
- The model is estimated in two steps.
 - In the first step, endogenous variables are regressed on their lags, like a RS-VAR. RS is allowed for the first step model for the sake of the Lucas (1976) critique.
 - In the second step, the first step residuals are used as control variables to eliminate the endogeneity bias.
Methodology Kim(2009)

- We use a regime switching (RS) model to capture contagion effect.
- RS model v.s. sample division
 - no pretesting problems (Danilov and Magnus, 2004)
- We instrument potential endogenous variables by lags.
- The model is estimated in two steps.
 - In the first step, endogenous variables are regressed on their lags, like a RS-VAR. RS is allowed for the first step model for the sake of the Lucas (1976) critique.
 - In the second step, the first step residuals are used as control variables to eliminate the endogeneity bias.
Tests for endogeneity

- Test for endogeneity is equivalent to a test whether the first-step residuals are significant in the second step.
- The usual t test is valid in a given regime.
- The test for joint significance of all residuals across all regimes is a Wald test. The test statistic follows a χ^2 distribution.
- Endogeneity of domestic variables? The Wald test for endogeneity gives $W = 123.9$ with p-value 0.000
- Endogeneity of global variables? If we instrument both domestic variables and the global stock market return, the p-value of W statistic is 0.084.
 t-tests also suggests that the global stock market return is exogenous in both regimes.
Tests for endogeneity

- Test for endogeneity is equivalent to a test whether the first-step residuals are significant in the second step.
- The usual t test is valid in a given regime.
- The test for joint significance of all residuals across all regimes is a Wald test. The test statistic follows a χ^2 distribution.
- Endogeneity of domestic variables? The Wald test for endogeneity gives $W = 123.9$ with p-value 0.000
- Endogeneity of global variables? If we instrument both domestic variables and the global stock market return, the p-value of W statistic is 0.084. t-tests also suggests that the global stock market return is exogenous in both regimes.
Table: Regime switching model results

<table>
<thead>
<tr>
<th></th>
<th>Turbulent</th>
<th>Tranquil</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>−0.001</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>CDS_L1</td>
<td>0.087***</td>
<td>0.055</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>$sdri$</td>
<td>−0.041</td>
<td>−0.432***</td>
</tr>
<tr>
<td></td>
<td>(0.118)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>svol</td>
<td>0.010</td>
<td>4.110***</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.347)</td>
</tr>
<tr>
<td>gstock</td>
<td>−0.209**</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(0.101)</td>
<td>(0.081)</td>
</tr>
<tr>
<td>ivbond</td>
<td>0.725</td>
<td>0.314</td>
</tr>
<tr>
<td></td>
<td>(1.173)</td>
<td>(0.866)</td>
</tr>
<tr>
<td>vix</td>
<td>0.135*</td>
<td>0.101*</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>p_{ii}</td>
<td>0.889</td>
<td>0.867</td>
</tr>
<tr>
<td>σ_ω</td>
<td>0.039</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Standard errors in parentheses. ***, **, * denotes significance at one, five, and ten percent level respectively.
Table: Drivers of the regime switching

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$dcds^2$</td>
<td>0.011***</td>
<td>0.011***</td>
<td>0.013***</td>
<td>0.013***</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.004)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>forex</td>
<td>0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.118)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$sdri$</td>
<td>-0.073^*</td>
<td>-0.013</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.033)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$svol$</td>
<td>-0.583^{***}</td>
<td>-0.767^{***}</td>
<td>-0.996^{***}</td>
<td>-1.074^{***}</td>
<td>-0.413^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.189)</td>
<td>(0.220)</td>
<td>(0.232)</td>
<td>(0.133)</td>
<td>(0.096)</td>
</tr>
<tr>
<td>$gstock$</td>
<td>-0.102^*</td>
<td>-0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.049)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$gbond$</td>
<td>1.310</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.099)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$ivbond$</td>
<td>-0.565^*</td>
<td>-0.754^{**}</td>
<td>-0.773^{**}</td>
<td>-0.793^{**}</td>
<td>-0.574^{**}</td>
</tr>
<tr>
<td></td>
<td>(0.340)</td>
<td>(0.377)</td>
<td>(0.392)</td>
<td>(0.345)</td>
<td>(0.325)</td>
</tr>
<tr>
<td>$hybond$</td>
<td>0.014*</td>
<td>0.015*</td>
<td>0.011*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.008)</td>
<td>(0.008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pe</td>
<td>0.145</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.132)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tp</td>
<td>0.607</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.394)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vix</td>
<td>-0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JR</td>
<td>0.234^{***}</td>
<td>0.227^{***}</td>
<td>0.227^{***}</td>
<td>0.232^{***}</td>
<td>0.230^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.041)</td>
<td>(0.040)</td>
<td>(0.021)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>DV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.914***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.486)</td>
</tr>
</tbody>
</table>

Heteroscedasticity-Autoregression Consistent Standard errors in parentheses. ***, **, * denote significance at one, five, and ten percent level, respectively.
News events as drivers

Event drivers

- Sept. 19th, 2008: Right after Lehman Bros. collapse
- Dec. 8th, 2009: Japanese government announced a 7.2 trillion Yen stimulus package
- Mar. 11th, 2011: Earthquake
- May. 10th, 2010: 1 trillion Euro area rescue package
- May. 22nd, 2012: Fitch's rating cut
European debt crisis as a driver?

- From the last figure, we see that the news about the Euro rescue package had a short impact.
- To check whether there is a systematic impact, we do two things
 - Control iTraxx SovX WE index (Euro zone, Denmark, Norway, Sweden, UK) in the RS model, but find no significance.
 - Regress the filtered probability of being in the turbulent regime on iTraxx SovX WE, but find no significance.
European debt crisis as a driver?

- From the last figure, we see that the news about the Euro rescue package had a short impact.
- To check whether there is a systematic impact, we do two things
 - Control iTraxx SovX WE index (Euro zone, Denmark, Norway, Sweden, UK) in the RS model, but find no significance.
 - Regress the filtered probability of being in the turbulent regime on iTraxx SovX WE, but find no significance.
Conclusion

- Contagion exists from the U.S. subprime crisis but not *systematically* from the EU.
- The domestic costs of sovereign default do exist.
- The 3.11 earthquake in 2011 had significant impact on the CDS spread.
- Rating agencies’ sovereign ratings do not always add new information to the market, but they are also not always useless.
Conclusion

- Contagion exists from the U.S. subprime crisis but not *systematically* from the EU.
- The domestic costs of sovereign default do exist.
- The 3.11 earthquake in 2011 had significant impact on the CDS spread.
- Rating agencies’ sovereign ratings do not always add new information to the market, but they are also not always useless.
Contagion exists from the U.S. subprime crisis but not *systematically* from the EU.

The domestic costs of sovereign default do exist.

The 3.11 earthquake in 2011 had significant impact on the CDS spread.

Rating agencies’ sovereign ratings do not always add new information to the market, but they are also not always useless.
Conclusion

- Contagion exists from the U.S. subprime crisis but not \textit{systematically} from the EU.
- The domestic costs of sovereign default do exist.
- The 3.11 earthquake in 2011 had significant impact on the CDS spread.
- Rating agencies’ sovereign ratings do not always add new information to the market, but they are also not always useless.